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The lattice thermal conductivity is reduced by point defects because they scatter 
phonons. An analytic expression can be derived only in the limit of high tem- 
peratures; at lower temperatures one must have recourse to numerical 
calculations. Because the conductivity is due mainly to phonons of low frequen- 
cies when point-defect scattering is strong, the high-temperature approximation 
can be used at temperatures above half the Debye temperature. Numerical 
calculations, using the Ge-Si system as an example, show that the error 
incurred by using the high-temperature approximation is less than 10%. 
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1. I N T R O D U C T I O N  

Because point  defects scatter phonons  with a scattering cross section vary- 
ing as the fourth power of frequency, while other interaction processes vary 
more  slowly with frequency, the lattice thermal conductivi ty can be 
expressed in an algebraic form only in the limit of high temperatures [1] ,  
where the spectral contr ibut ion to the specific heat attains the simple form 
of the classical limit. When  the highest-frequency phonons  are strongly 
scattered by point  defects, these phonons  make only a small contr ibut ion 
to the conductivi ty integral. 

If point  defects eliminate the contr ibut ion from the high frequencies, 
the classical or high-temperature approximat ion  should still be good at 
somewhat  lower temperatures,  when the classical limit no longer holds for 
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the highest frequencies but still holds at those lower frequencies which 
make the major contribution to the thermal conductivity. Hence the high- 
temperature approximation of Ref. 1 might still be useful even at inter- 
mediate temperatures below the Debye temperature, provided point-defect 
scattering is strong enough. The present work tests this conjecture by 
numerically comparing the evaluated thermal conductivity integrals with 
the high-temperature approximation. 

The model calculations are done with parameters which are typical for 
solid solutions such as the well-studied Ge-Si system. The conclusion 
arrived at is that the high-temperature approximation works well down to 
half the Debye temperature; this conclusion should be generally valid. 

2. LATTICE THERMAL CONDUCTIVITY 

In general, for an isotropic Debye solid the lattice thermal conduc- 
tivity is given by the integral 

kBCOD 3 ~O/T X 4 e  "c 

2 = ~  ~o (eX--1)  2r(cO) dx (1) 

where kB is the Boltzmann constant, cod and 0 are the Debye frequency 
and temperature, respectively, T is the absolute temperature, v is the 
spherically averaged speed of sound, T is the overall relaxation time, and 
x = hco/kB T the reduced frequency. Here h is the Planck constant divided 
by 2~. 

We consider two scattering processes which contribute to the 
relaxation rate 1/~ and provide the thermal resistance. The first are the 
anharmonic three-phonon interactions. Their relaxation rate is of the form 
[1] 

1/vu = Bco2T (2) 

The other processes are scattering of phonons by point defects, with a 
relaxation rate [1 ] 

1/4' = ACO 4 (3) 

The coefficient A depends on the nature of the defect and the concen- 
tration. For mass-defect scattering it has the form 

A = (a3/4~v 3) ~ (4) 

where a 3 is the atomic volume, and 

e = ~ f ~ ( M i -  M ) 2 / M  2 (5) 
i 
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and M is the average mass, i.e., 

M = ~ f ~ M ,  (6) 
i 

Here fi  is the fraction of atoms of type i of mass Mi. 
The overall relaxation time is the reciprocal of the sum of the 

relaxation rates given by Eqs. (2) and (3), i.e., 

r = [BT(T/O) 2 COD2X2] [1 + (TO)D/OC%) X 2] 1 (7) 

where coo is defined by 
co~ = BT/A (8) 

so that ~'(coo)= %(60o). Note that in the case of no point-defect scattering, 
co o ~ oo and, according to Eq. (7), r ~ ru. Then if Eq. (7) is substituted 
into Eq. (1), one obtains the intrinsic thermal conductivity 2i. The ratio of 
2, the thermal conductivity in the presence of point defects, to 2,, the 
intrinsic conductivity, is therefore 

2 ~~ 1)-2X2[1 q-(TCOD/OU)o)2X 2] ~dx 
(9) 

)oi ~o/r  e,~(e.~ _ 1 ) 2 x2 dx 

Previously [1] Eq. (9) was approximated in the high-temperature 
limit where eX(e ~ -  1 )-2 _~ 1. This gave the analytical expression 

~- _ coo tan_~(coD/coo) 10) 
2i coD 

The present work tests the limits of validity of Eq. (10) by comparing it to 
numerical evaluations of Eq. (9). 

3. NUMERICAL EVALUATION AND RESULTS 

The numerical comparison of Eqs. (9) and (10) was done for the 
binary alloy system Ge-Si. This system has been well studied, and the 
necessary parameters are available. 

In order to evaluate Eqs. (9) and (10) for different fractions fsi of 
silicon, a linear interpolation was assumed between Si and Ge of those 
parameters which depend on the average material, in the manner of Abeles 
[2]. Debye temperatures 0 for Si and Ge are, respectively, 645 and 374 K 
[3]; atomic masses are 28.1 and 72.6; spherically averaged sound velocities, 
calculated from elastic moduli, are 6.60x 105 and 3.98 x l0 s cm-s-~;  and 
lattice constants are 5.43 and 5.66 7i [4]. 
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The values of 2i(T ) were those recommended by Touloukian et al. 
[5]; from these the product T2i(T) near 0 was formed, and thus values of 
B for the elements. For the alloys values of B were obtained by inter- 
polation. The values of T2i(T) used are 3 6 5 W ' c m  -1 for Si and 
191 W . c m  - j  for Ge. 

With these data, Eqs. (9) and (10) were evaluated, in the former case 
using Bode's method [6]. The results of the calculations are displayed in 
Fig. 1 in the following manner. The ratio 2/22 was calculated from Eq. (9). 
The approximate ratio (,~/2i)approx was obtained from Eq. (10). The frac- 
tional difference, expressed as a percentage, i.e., 

lO0[,~/~ i --(~/~i)approx ]/(~/~i) (11) 

is the ordinate. This difference is a function of 7"/0. For various values of 
T/O (ranging from 3 to 0.2) it is plotted as a function of the silicon content. 

One notes several features. First, it is found that the approximation 
given by Eq. (10) agrees with the numerical calculation to within 2% at 
T>O, as one would expect from a high-temperature approximation. 
Second, the difference is less than 10% for T/O ranging from 0.5 to 1, so 
that for most purposes the approximation is still useful. The fractional 
error is only mildly sensitive to concentration in the middle range Of fsi,  
where e is large and point-defect scattering strong. 

What is surprising at first sight is that the fractional discrepancy 
decreases at a low solute content. This is a consequence of presenting the 
results as ratios 2/2 i. As point-defect scattering decreases, both calculations 
make 2 tend toward 2i, so that the fractional difference must be small. 

The curves are not symmetrical about fs i=0 .5 .  This is due to the dif- 
ference in material parameters of the two constituents, especially their dif- 
ference in Debye temperature 0. It is of interest that the deviation curves 
show a maximum atfsi  = 0.35, which is where the two elements make equal 
contributions to the average Debye temperature Zif,.0i. 

The present calculations do not tell us over what range of temperature 
the high-temperature approximation for 2~ can be used. 

In conclusion, the ratio was calculated between the lattice thermal 
conductivity, including anharmonic processes and point-defect scattering, 
and the intrinsic conductivity, limited only by anharmonic processes. This 
was done for the binary alloy system Ge-Si, as a function of the fractional 
silicon concentration, at a number of fixed temperatures 7/0. The results 
were then compared to the high-temperature approximation [1]. Very 
good agreement was found for T>O, the temperature range for which 
Eq. (10) had been derived. Reasonable agreement was found for the inter- 
mediate temperature range 0 >  T>0.50, allowing one to use Eq. (10) to 
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Fig. 1. Percentage difference versus fraction 
of Si for fixed values of T/O as indicated. The 
percentage difference is that between 2/2~ 
calculated numerically from Eq. (9) and the 
approximate value obtained from Eq. (10). 
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somewhat below the Debye temperature. This illustrates that point-defect 
scattering extends the limit of validity of the classical high-temperature 
approximation, because the modes of highest frequency are removed from 
the conduction process. 
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